Algorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation

نویسنده

  • Robert Granat
چکیده

This Thesis contains contributions in two different but closely related subfields of Scientific and Parallel Computing which arise in the context of various eigenvalue problems: periodic and parallel eigenvalue reordering and parallel algorithms for Sylvestertype matrix equations with applications in condition estimation. Many real world phenomena behave periodically, e.g., helicopter rotors, revolving satellites and dynamic systems corresponding to natural processes, like the water flow in a system of connected lakes, and can be described in terms of periodic eigenvalue problems. Typically, eigenvalues and invariant subspaces (or, specifically, eigenvectors) to certain periodic matrix products are of interest and have direct physical interpretations. The eigenvalues of a matrix product can be computed without forming the product explicitly via variants of the periodic Schur decomposition. In the first part of the Thesis, we propose direct methods for eigenvalue reordering in the periodic standard and generalized real Schur forms which extend earlier work on the standard and generalized eigenvalue problems. The core step of the methods consists of solving periodic Sylvester-type equations to high accuracy. Periodic eigenvalue reordering is vital in the computation of periodic eigenspaces corresponding to specified spectra. The proposed direct reordering methods rely on orthogonal transformations and can be generalized to more general periodic matrix products where the factors have varying dimensions and ±1 exponents of arbitrary order. In the second part, we consider Sylvester-type matrix equations, like the continuoustime Sylvester equation AX −XB = C, where A of size m×m, B of size n× n, and C of size m× n are general matrices with real entries, which have applications in many areas. Examples include eigenvalue problems and condition estimation, and several problems in control system design and analysis. The parallel algorithms presented are based on the well-known Bartels–Stewart’s method and extend earlier work on triangular Sylvester-type matrix equations resulting in a novel software library SCASY. The parallel library provides robust and scalable software for solving 44 sign and transpose variants of eight common Sylvester-type matrix equations. SCASY also includes a parallel condition estimator associated with each matrix equation. In the last part of the Thesis, we propose parallel variants of the direct eigenvalue

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products

This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...

متن کامل

Master ’ s Thesis Proposal , 20 credits : ScaLAPACK - style algorithms for Periodic Matrix Equations

1 Motivation This Master's Thesis project considers software for solving periodic Sylvester-type matrix equations. Recently, the ScaLAPACK-style library SCASY was completed. SCASY is a parallel HPC software library that solves for 42 sign and transpose variant of 8 common standard and generalized Sylvester-type matrix equations (see Table 1) which builds on the Table 1: The Sylvester-type matri...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part II: The SCASY Software Library

We continue our presentation of parallel ScaLAPACK-style algorithms for solving Sylvester-type matrix equations. In Part II, we present SCASY, a state-of-the-art HPC software library for solving 44 sign and transpose variants of eight common standard and generalized Sylvester-type matrix equations. The internal design of the library, Fortran interfaces and implementation issues are discussed in...

متن کامل

Direct Eigenvalue Reordering in a Product of Matrices in Extended Periodic Real Schur Form∗

A direct method for eigenvalue reordering in a product of a K-periodic matrix sequence in periodic or extended periodic real Schur form is presented and analyzed. Each reordering of two adjacent sequences of diagonal blocks is performed tentatively to guarantee backward stability and involves solving a K-periodic Sylvester equation (PSE) and constructing a K-periodic sequence of orthogonal tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007